1 Sequences

1.1 Definition of Sequence

A sequence is a function $f: \mathbb{R} \to \mathbb{R}$ that maps natural numbers to real numbers. Often it is convenient to define a sequence as a function $f: \mathbb{N}^+ \to \mathbb{R}$ that maps positive natural numbers to real numbers, which is the terminology we adopt in these notes.

A sequence can be:

```
monotonic if it is either increasing (a_{n+1} \ge a_n) or decreasing (a_{n+1} \le a_n).

strictly increasing if a_{n+1} > a_n.

strictly decreasing if a_{n+1} < a_n.
```

1.2 Convergence

A sequence $(a_n)_{n\geq 1}$:

- 1. converges to a limit l in \mathbb{R} iff For all $\epsilon > 0$, we can find a N in \mathbb{N} such that, for all n > N: $|a_n l| < \epsilon$, which can be written as $\lim_{n \to \infty} na_n = l$ or $(a_n)_{n \ge 1} \to l$.
- 2. **converges to** ∞ in the extended real line $\mathbb{R} \cup \{\infty\}$ iff For all r in \mathbb{R} , there is an N in \mathbb{N} such that for all $n \geq N$ we have $a_n > r$, which can be written as $\lim_{n\to\infty} na_n = \infty$ or $(a_n)_{n\geq 1} \to \infty$.
- 3. **converges to** $-\infty$ in the extended real line $\mathbb{R} \cup \{-\infty\}$ iff For all r in \mathbb{R} , there is an N in \mathbb{N} such that for all $n \geq N$ we have $a_n < r$, which can be written as $\lim_{n \to \infty} na_n = -\infty$ or $(a_n)_{n \geq 1} \to -\infty$.
- 4. **converges** if it converges either to a real number of to $\pm \infty$.
- 5. **diverges** if it does not converge.

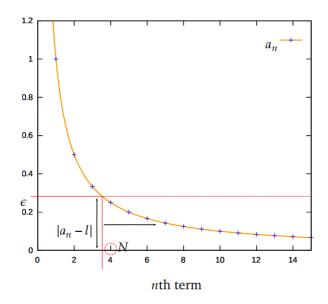


Figure 2.1: The convergence of the sequence $a_n = 1/n$ for $n \ge 1$ tending to 0

1.3 Combinations of Sequences

Given sequences $(a_n)_{n\geq 1}$ and $(a_n)_{n\geq 1}$ b which converge to limits a and b respectively, and a real constant λ , then we have:

- 1. $\lim_{n\to\infty} \lambda a_n = \lambda a$
- $2. \lim_{n\to\infty} a_n + b_n = a + b$
- 3. $\lim_{n\to\infty} a_n b_n = a b$
- 4. $\lim_{n\to\infty} a_n b_n = ab$
- 5. $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$, provided that $b\neq 0$

1.4 Cauchy Sequences

A sequence $(a_n)_{n\geq 1}$ is a **Cauchy Sequence** iff for all $\epsilon>0$, there is some N in \mathbb{N} such that for all n,m>N we have $|a_n-a_m|<\epsilon$.

Every sequence that converges to a real number is a Cauchy sequence.

1.4.1 Cauchy complete

A subset $A \subset \mathbb{R}$ is said to be complete if all Cauchy sequences in A converges to a limit in A.

Theorem \mathbb{R} is complete.

Rational numbers \mathbb{Q} are not complete. Because $a_{n+1} = \frac{1}{2} \cdot \left(a_n + \frac{2}{a_n}\right)$ converges to $\sqrt{2}$

1.5 Sandwich Theorem

Let $(u_n)_{n\geq 1}$ $(l_n)_{n\geq 1}$ be sequences, and l a real number where both $\lim_{n\to\infty} u_n = l$ and $\lim_{n\to\infty} l_n = l$ Suppose that for a third sequence $(a_n)_{n\geq 1}$ a we have:

there is some $N \in \mathbb{N}$ such that $l_n \leq a_n \leq u_n$ for all $n \geq N$

Then $\lim_{n\to\infty} a_n = l$ as well.

1.6 Ratio Tests for Sequences

Ratio Convergence Test can be used to determine whether a sequence converges to zero or diverges. It can also be applied to sequence like $a_n - l$ to prove that a_n converges to a limit l.

Ratio Convergence Test Let c in \mathbb{R} be such that $0 \le c < 1$. Suppose that there is some N in \mathbb{N} such that for all $n \ge N$ we have $\left|\frac{a_n+1}{a_n}\right| \le c$. Then $\lim_{n\to\infty} a_n = 0$.

Limit Ratio Test Suppose that the limit

$$r = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

exists, If r < 1, then the sequence $(a_n)_{n > 1}$ converges to 0.

1.6.1 Example: Convergence Ratio Test

Consider the sequence $(a_n)_{n\geq 1}$ where a_n equals 3^{-n} for all $n\geq 1$. Then we have:

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{3} < 1$$

So we can choose c to be $\frac{1}{3}$ and N to be 1 and the Ratio Convergence Test passes for these values. Therefore, $a_n has limit 0$.

1.6.2 Example: Ratio Convergence Test and Limit Ratio Test

Consider the sequence $(a_n)_{n\geq 1}$ where a_n equals $\frac{1}{n!}$ for all $n\geq 1$. Then we have:

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{n+1}$$

We can choose $c = \frac{1}{2}$ to apply the Ratio Convergence Test. We can also apply the Limit Ratio Test. Then we get

$$\lim_{n \to \infty} \left(\frac{1}{n+1} \right)_{n \ge 1} = 0$$

So the sequence has limit 0.

1.7 Subsequences of a sequence

If $f: \mathbb{N} \to \mathbb{R}$ is a sequence and $M \subset \mathbb{N}$ an infinite subset, then the restriction $f: M \to \mathbb{R}$ is called a subsequence of f. Using the usual notion $(a_n)_{n\geq 1}$ for a sequence, any subsequence of this sequence would be of the form $(a_{ni})_{i\geq 1}$ where n_i are positive integers with $n_1 < n_2 < n_3 \ldots$, i.e., $M = n_i : i \geq 1$.

1.7.1 Example

Suppose $a_n = \frac{1}{n}$, then $a_{ni} = \frac{1}{2i}$ is one of the subsequences of a_n .

Theorem Any subsequence of a convergent sequence converges to the limit of the sequence.

Proposition Any sequence of real numbers has a monotonic subsequence.

1.7.2 Peak

For any $m \ge 1$, we say that a_m is a **peak** of $(a_n)_{n\ge 1}$ if $a_m \ge a_n$ for all $n \ge m$.

A strictly increasing sequence will have no peaks while in a decreasing sequence every term is a peak.

1.8 Manipulating Absolute Values: Useful Techniques

$$|x| < a \Leftrightarrow -a < x < a$$

Abs1
$$|x \cdot y| = |x| \cdot |y|$$

Abs2
$$\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$$

Abs3
$$|x + y| = |x| + |y|$$
, the *triangle inequality*

Abs4
$$|x - y| = ||x| - |y||$$

1.9 Properties of Real Numbers – Fundamental Axiom of Analysis

Let X be a set of real numbers.

- 1. Let l and u be real numbers. Then:
 - (a) u is an upper bound of X if $x \leq u$ for all $x \in X$
 - (b) l is a lower bound of X if $l \leq x$ for all $x \in X$
 - (c) a least upper bound of X is an upper bound s of X such that $s \leq u$ for all upper bounds u of X
 - (d) a greatest lower bound of X is a lower bound i of X such that $l \leq i$ for all lower bounds l of X

- 2. We say that such a set X is
 - (a) bounded above if X has an upper bound
 - (b) bounded below if X has a lower bound
 - (c) bounded if X has an upper and lower bound

supremum The least upper bounds are unique whenever they exist, which we denote with $\sup(X)$.

infimum In a dual sense, greatest lower bounds are unique if they exist, which we denote with $\inf(X)$.

For example, the set of positive real numbers $\{x \in \mathbb{R} | x > 0\}$ does not have any upper bounds and so also no least upper bound. But it has 0 and all negative numbers as lower bounds and 0 is its greatest lower bound.

1.9.1 Axiom of Completeness for Real Numbers

Every non-empty subset X of the real numbers \mathbb{R} that is bounded above has a least upper bound.

1.9.2 Fundamental Theorem of Analysis

Let $(a_n)_{n\geq 1}$ be a sequence of real numbers that is

- 1. **increasing**, i.e. for all $n \ge m \ge 1$ we have $a_n \ge a_m$, and
- 2. bounded above, i.e. there is some u in \mathbb{R} such that $a_n \leq u$ for all $n \geq 1$.

Then $s = \sup\{a_n | n \ge 1\}$ exists and is the limit of the sequence $(a_n)_{n \ge 1}$.

Theorem \mathbb{R} is complete.

2 Continuous Functions

2.1 Limits of Functions

The function $f:[a,b]\to\mathbb{R}$ has a limit $l\in\mathbb{R}$ at $x_0\in[a,b]$ if for all $\epsilon>0$ there exists $\delta>0$ such that whenever $x\in[a,b]$ and $|x-x_0|<\delta$, then $|f(x)-l|<\delta$. We write this as $\lim_{x\to x_0}f(x)=l$.

2.1.1 Example

Take function $f:[0,1] \to \mathbb{R}$ with $f(x) = \sin(1/x)$ if x! = 0 and f(0) = 0. f has a limit for each $x_0 \in (0,1]$ with $\lim_{x \to -x_0} f(x) = \sin(1/x_0)$ but f has no limit at $x_0 = 0$.

Proposition Suppose the two functions $f, g : [a, b] \to \mathbb{R}$ have limits $k \in R$ and $l \in R$ respectively at $x_0 \in [a, b]$. Then:

- $f \pm g$ has limit $k \pm l$ at x_0 .
- $f \cdot g$ has limit $k \cdot l$ at x_0 .
- f/g has limit k/l at x_0 , if $l \neq 0$.