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1.1 Definition of Sequence

A sequence is a function f : R → R that maps natural numbers to real numbers. Often it is convenient

to define a sequence as a function f : N+ → R that maps positive natural numbers to real numbers,

which is the terminology we adopt in these notes.

A sequence can be:

monotonic if it is either increasing (an+1 ≥ an) or decreasing (an+1 ≤ an).

strictly increasing if an+1 > an.

strictly decreasing if an+1 < an.

1.2 Convergence

A sequence (an)n≥1:

1. converges to a limit l in R iff For all ϵ > 0, we can find a N in N such that, for all n > N :

|an − l| < ϵ, which can be written as limn→∞ nan = l or (an)n≥1→ l.

2. converges to ∞ in the extended real line R∪ {∞} iff For all r in R, there is an N in N such that

for all n ≥ N we have an > r, which can be written as limn→∞ nan = ∞ or (an)n≥1→ ∞.

3. converges to −∞ in the extended real line R ∪ {−∞} iff For all r in R, there is an N in N such

that for all n ≥ N we have an < r, which can be written as limn→∞ nan = −∞ or (an)n≥1→ −∞.

4. converges if it converges either to a real number of to ±∞.

5. diverges if it does not converge.
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1.3 Combinations of Sequences

Given sequences (an)n≥1 and (an)n≥1b which converge to limits a and b respectively, and a real constant

λ, then we have:

1. limn→∞ λan = λa

2. limn→∞ an + bn = a+ b

3. limn→∞ an − bn = a− b

4. limn→∞ anbn = ab

5. limn→∞
an

bn
= a

b
, provided that b ̸= 0

1.4 Cauchy Sequences

A sequence (an)n≥1 is a Cauchy Sequence iff for all ϵ > 0, there is some N in N such that for all

n,m > N we have |an−am| < ϵ.

Every sequence that converges to a real number is a Cauchy sequence.

1.4.1 Cauchy complete

A subset A ⊂ R is said to be complete if all Cauchy sequences in A converges to a limit in A.

Theorem R is complete.

Rational numbers Q are not complete. Because an+1 =
1
2
·
(
an + 2

an

)
converges to

√
2
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1.5 Sandwich Theorem

Let (un)n≥1 (ln)n≥1 be sequences, and l a real number where both limn→∞ un = l and limn→∞ ln = l

Suppose that for a third sequence (an)n≥1a we have:

there is some N ∈ N such that ln ≤ an ≤ un for all n ≥ N

Then limn→∞ an = l as well.

1.6 Ratio Tests for Sequences

Ratio Convergence Test can be used to determine whether a sequence converges to zero or diverges. It

can also be applied to sequence like an − l to prove that an converges to a limit l.

Ratio Convergence Test Let c in R be such that 0 ≤ c < 1. Suppose that there is some N in N such

that for all n ≥ N we have
∣∣∣an+1

an

∣∣∣ ≤ c. Then limn→∞ an = 0.

Limit Ratio Test Suppose that the limit

r = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists, If r < 1, then the sequence (an)n≥1 converges to 0.

1.6.1 Example: Convergence Ratio Test

Consider the sequence (an)n≥1 where an equals 3−n for all n ≥ 1. Then we have:∣∣∣∣an+1

an

∣∣∣∣ = 1

3
< 1

So we can choose c to be 1
3

and N to be 1 and the Ratio Convergence Test passes for these values.

Therefore, anhaslimit0.

1.6.2 Example: Ratio Convergence Test and Limit Ratio Test

Consider the sequence (an)n≥1 where an equals 1
n!

for all n ≥ 1. Then we have:∣∣∣∣an+1

an

∣∣∣∣ = 1

n+ 1

We can choose c = 1
2

to apply the Ratio Convergence Test. We can also apply the Limit Ratio Test.

Then we get

lim
n→∞

(
1

n+ 1

)
n≥1

= 0

So the sequence has limit 0.
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1.7 Subsequences of a sequence

If f : N → R is a sequence and M ⊂ N an infinite subset, then the restriction f : M → R is called a

subsequence of f . Using the usual notion (an)n≥1 for a sequence, any subsequence of this sequence would

be of the form (ani)i≥1 where ni are positive integers with n1 < n2 < n3 . . ., i.e., M = ni : i ≥ 1.

1.7.1 Example

Suppose an = 1
n

, then ani =
1
2i

is one of the subsequences of an.

Theorem Any subsequence of a convergent sequence converges to the limit of the sequence.

Proposition Any sequence of real numbers has a monotonic subsequence.

1.7.2 Peak

For any m ≥ 1, we say that am is a peak of (an)n≥1 if am ≥ an for all n ≥ m.

A strictly increasing sequence will have no peaks while in a decreasing sequence every term is a peak.

1.8 Manipulating Absolute Values: Useful Techniques

|x| < a ⇔ −a < x < a

Abs1 |x · y| = |x| · |y|

Abs2
∣∣∣xy ∣∣∣ = |x|

|y|

Abs3 |x+ y| = |x|+ |y|, the triangle inequality

Abs4 |x− y| = ||x| − |y||

1.9 Properties of Real Numbers – Fundamental Axiom of Analysis

Let X be a set of real numbers.

1. Let l and u be real numbers. Then:

(a) u is an upper bound of X if x ≤ u for all x ∈ X

(b) l is a lower bound of X if l ≤ x for all x ∈ X

(c) a least upper bound of X is an upper bound s of X such that s ≤ u for all upper bounds u of

X

(d) a greatest lower bound of X is a lower bound i of X such that l ≤ i for all lower bounds l of X
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2. We say that such a set X is

(a) bounded above if X has an upper bound

(b) bounded below if X has a lower bound

(c) bounded if X has an upper and lower bound

supremum The least upper bounds are unique whenever they exist, which we denote with sup(X).

infimum In a dual sense, greatest lower bounds are unique if they exist, which we denote with inf(X).

For example, the set of positive real numbers {x ∈ R|x > 0} does not have any upper bounds and so

also no least upper bound. But it has 0 and all negative numbers as lower bounds and 0 is its greatest

lower bound.

1.9.1 Axiom of Completeness for Real Numbers

Every non-empty subset X of the real numbers R that is bounded above has a least upper bound.

1.9.2 Fundamental Theorem of Analysis

Let (an)n≥1 be a sequence of real numbers that is

1. increasing, i.e. for all n ≥ m ≥ 1 we have an ≥ am, and

2. bounded above, i.e. there is some u in R such that an ≤ u for all n ≥ 1.

Then s = sup{an|n ≥ 1} exists and is the limit of the sequence (an)n≥1.

Theorem R is complete.
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2 Continuous Functions

2.1 Limits of Functions

The function f : [a, b] → R has a limit l ∈ R at x0 ∈ [a, b] if for all ϵ > 0 there exists δ > 0 such that

whenever x ∈ [a, b] and |x− x0| < δ, then |f(x)− l| < δ. We write this as limx→x0 f(x) = l.

2.1.1 Example

Take function f : [0, 1] → R with f(x) = sin(1/x) if x! = 0 and f(0) = 0. f has a limit for each x0 ∈ (0, 1]

with limx→−x0
f(x) = sin(1/x0) but f has no limit at x0 = 0.

Proposition Suppose the two functions f, g : [a, b] → R have limits k ∈ R and l ∈ R respectively at

x0 ∈ [a, b]. Then:

• f ± g has limit k ± l at x0.

• f · g has limit k · l at x0.

• f/g has limit k/l at x0, if l ̸= 0.
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