1 Sequences



1.1 Definition of Sequence

A sequence is a function f: R — R that maps natural numbers to real numbers. Often it is convenient
to define a sequence as a function f : NT — R that maps positive natural numbers to real numbers,

which is the terminology we adopt in these notes.

A sequence can be:
monotonic if it is either increasing (a,,1 > an) or decreasing (an+1 < ay).
strictly increasing if a,.1 > a,.

strictly decreasing if a,11 < a,.

1.2 Convergence

A sequence (an)n>1:

1. converges to a limit [ in R iff For all € > 0, we can find a N in N such that, for alln > N:

la, — | < €, which can be written as lim,, . na, =1 or (a,),>1— L.

2. converges to oo in the extended real line RU {oo} iff For all r in R, there is an N in N such that

for all n > N we have a,, > r, which can be written as lim,,_, . na, = 00 or (ay)p>1—> 0.

3. converges to —oo in the extended real line RU {—oc} iff For all r in R, there is an N in N such

that for all n > N we have a,, < r, which can be written as lim,,_,  na, = —00 or (a,),>1— —00.
4. converges if it converges either to a real number of to +oo.

5. diverges if it does not converge.
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Figure 2.1: The convergence of the sequence a,, = 1/n for n > 1 tending to 0

1.3 Combinations of Sequences

Given sequences (ay,,),>1 and (a,),>1b which converge to limits a and b respectively, and a real constant

A, then we have:
1. lim,, oo Aa, = Aa
2. lim, ,ca,+b,=a+0b
3. lim, ,ca, — b, =a—0>
4. lim,,_y0o anb, = ab

5. lim,, o ‘;—: = %, provided that b # 0

1.4 Cauchy Sequences

A sequence (ay),>1 is a Cauchy Sequence iff for all € > 0, there is some N in N such that for all
n,m > N we have |a,—a,,| < €.

Every sequence that converges to a real number is a Cauchy sequence.

1.4.1 Cauchy complete

A subset A C R is said to be complete if all Cauchy sequences in A converges to a limit in A.
Theorem R is complete.

Rational numbers QQ are not complete. Because a,11 = % . <an + al) converges to V2



1.5 Sandwich Theorem

Let (un)n>1 (In)n>1 be sequences, and [ a real number where both lim,, o u, = [ and lim, o1, =1

Suppose that for a third sequence (a,),>1a we have:
there is some N € N such that I,, < a,, < u, for alln > N

Then lim,, _, a,, =l as well.

1.6 Ratio Tests for Sequences

Ratio Convergence Test can be used to determine whether a sequence converges to zero or diverges. It

can also be applied to sequence like a,, — I to prove that a,, converges to a limit [.

Ratio Convergence Test Let c in R be such that 0 < ¢ < 1. Suppose that there is some N in N such

that for all n > N we have < ¢. Then lim,,_,o a, = 0.

an+1
an

Limit Ratio Test Suppose that the limit

a/nJrl
Qp,

r = lim
n— 00

exists, If r < 1, then the sequence (a,),>1 converges to 0.

1.6.1 Example: Convergence Ratio Test

Consider the sequence (a,),>1 where a,, equals 37" for all n > 1. Then we have:

1

An41
=<1
3

Qn

So we can choose ¢ to be % and N to be 1 and the Ratio Convergence Test passes for these values.

Therefore, a,,haslimit0.
1.6.2 Example: Ratio Convergence Test and Limit Ratio Test

Consider the sequence (ay,),>1 where a,, equals % for all n > 1. Then we have:

an+1
Gp

1
Cn+1

We can choose ¢ = % to apply the Ratio Convergence Test. We can also apply the Limit Ratio Test.

1
lim =0
n—oo \ 1+ 1 n>1

Then we get

So the sequence has limit 0.



1.7 Subsequences of a sequence

If f: N — Ris asequence and M C N an infinite subset, then the restriction f : M — R is called a
subsequence of f. Using the usual notion (a,),>1 for a sequence, any subsequence of this sequence would
be of the form (a,;);>1 where n; are positive integers with n; < no <ng...,ie., M =n;:i> 1.

1.7.1 Example

Suppose a,, = %, then a,; = = is one of the subsequences of a,,.

2i
Theorem Any subsequence of a convergent sequence converges to the limit of the sequence.

Proposition Any sequence of real numbers has a monotonic subsequence.

1.7.2 Peak

For any m > 1, we say that a,, is a peak of (a,),>1 if a,,, > a, for all n > m.

A strictly increasing sequence will have no peaks while in a decreasing sequence every term is a peak.

1.8 Manipulating Absolute Values: Useful Techniques

lz]<ae —a<z<a

Absl |z -y| = |z |yl

[yl

Abs2

m
Abs3 |z + y| = |z| + |y, the triangle inequality

Absd |z —y| = [|z| — [yl

1.9 Properties of Real Numbers — Fundamental Axiom of Analysis

Let X be a set of real numbers.

1. Let [ and u be real numbers. Then:

(a) wis an upper bound of X if x < w for all z € X
(b) lis a lower bound of X if | < x for all z € X

(c) a least upper bound of X is an upper bound s of X such that s < u for all upper bounds u of
X

(d) a greatest lower bound of X is a lower bound 7 of X such that I < i for all lower bounds [ of X



2. We say that such a set X is

(a) bounded above if X has an upper bound
(b) bounded below if X has a lower bound

(¢) bounded if X has an upper and lower bound

supremum The least upper bounds are unique whenever they exist, which we denote with sup(X).

infimum In a dual sense, greatest lower bounds are unique if they exist, which we denote with inf(X).

For example, the set of positive real numbers {z € R|z > 0} does not have any upper bounds and so
also no least upper bound. But it has 0 and all negative numbers as lower bounds and 0 is its greatest

lower bound.

1.9.1 Axiom of Completeness for Real Numbers

Every non-empty subset X of the real numbers R that is bounded above has a least upper bound.

1.9.2 Fundamental Theorem of Analysis
Let (ay)n>1 be a sequence of real numbers that is
1. increasing, i.e. for all n > m > 1 we have a,, > a,,, and
2. bounded above, i.e. there is some u in R such that a,, < u for all n > 1.

Then s = sup{a,|n > 1} exists and is the limit of the sequence (ay,)n>1.

Theorem R is complete.



2 Continuous Functions

2.1 Limits of Functions

The function f : [a,b] — R has a limit [ € R at zo € [a,b] if for all € > 0 there exists § > 0 such that

whenever z € [a,b] and |z — xo| < §, then |f(z) — | < §. We write this as lim,_,,0 f(x) = L.

2.1.1 Example

Take function f : [0,1] — R with f(z) = sin(1/x) if z! = 0 and f(0) = 0. f has a limit for each zq € (0, 1]
with lim, , ., f(xz) = sin(1/x¢) but f has no limit at z, = 0.

Proposition Suppose the two functions f, g : [a,b] — R have limits kK € R and [ € R respectively at
xg € [a,b]. Then:
e f 4 g haslimit k +1 at xq.
e f-g haslimit k-1 at x,.

o f/g has limit k/I at z¢, if [ # 0.



