Compilers

Chapter 1
Lexical & Syntax Analysis

1.1 Finite Automata

Finite Automata are formal models for describing algorithms.

Technically each non-accepting state should have a transition for every symbol, which represents errors.

But these are omitted from diagrams.

1.1.1 Deterministic Finite Automata

No two transitions leaving a state have the same symbol. (Informally, no backtrace needed)

1.1.2 Non-Deterministic Finite Automata

Allow a choice of transitions out of a state. (Informally, backtrace allowed)

OMOB O

f

1.1. FINITE AUTOMATA

1.1.3 Transforming From RegExp to NFA: Thompson’s Construction

Symbol
Epsilon
Grouping

mOMO,

Concatenation: r; ry

~0-0 O

= Replace with

-0-O—0-0
-0 00

4 CHAPTER 1. LEXICAL & SYNTAX ANALYSIS

Alternation: r | ro

Given

Ok OL
: " @\ :
IROH O

RS

1.1.4 Transforming From NFA to DFA: Subset Construction

Repetition: r*

Start with initial node, in each turn, assume the node we are processing is A:

e Add e-closure targets to form a combined node group, in which there is a e-transformation from
the node to other nodes. For e-transformations A — B; A — C; B — D: create a new node group

(A, B,C, D) if it does not exist, and work on that combined group for the following steps.

e For each node in the node group:

— find and combine one-step targets of each its outgoing path. For A 5% BAY C A LN

D;D S E:
x A can go along g to B or C, and B, C has no outgoing € paths, so add A % (B,C). (B,C)
must be treated as a whole, so you cannot add A % (B, C, E), nor A % (B).

* A can go along h to D, and D goes € to E, so add exactly A UR (D, E).

1.1. FINITE AUTOMATA 5

« If (B,C) or (D, E) already exists, just add a path. If not, create a new such node then
add a path.

* If you calculated a (A,C) 2% (A, C), then this is the only case you can add a circle from
(A, C) toitself (by g). Neither (4) & (A, C) nor (A, C) % A form a circle, since combined

nodes must be treated as a whole.

— You should repeat this process for all the outgoing paths for all the nodes in the node group.

The example below shows how to transform the given NFA to DFA. Note this example is from the

Lecture and is too simple. Try questions from tutorial sheet for reference. (sample answers)

Start with initial node, we aim to create a combined node from its e-transformations.

Node 0 has € transformation to 3, and 3 has e transformation to 1. So merge three nodes:

Iterate path from nodes in the group. The node group (0,3, 1) contains 3 nodes 0, 3,1, so for first
node O:

By a, 1 goes to exactly node (2). So 0,3, 1 should go to exactly (2) by a:

Node 3 and 0 does not have non-¢ outgoing paths. So we finished this step.
Now we move to the node we just added, the (2). First combine e-clousure:
Node 2 has € transformation to 3, and 3 has e transformation to 1. So add three nodes to create a node

group (we are replacing (2) to (2,3,1), and this is the only step we can replace a node to node group):

Since 1 goes to exactly node 2 by a.

https://www.doc.ic.ac.uk/~nd/compilers/T1_LexicalAnalysis.pdf
https://www.doc.ic.ac.uk/~nd/compilers/T1S_LexicalAnalysis.pdf

6 CHAPTER 1. LEXICAL & SYNTAX ANALYSIS

We want to add path (2,3,1) = (2), but (2) = (3) and (3) = (1), so we actually should add (2,3,1) <
(2,3,1), which is a circle.

Now consider accepting states. Originally 3 is an accepting state, so all new node groups that contains

LR (bottom-up) parsing is also known as shift-reduce parsing.

3 should also be accepting state:

1.2 LR Parsing

e bottom-up reflects the direction of the AST is constructed.

o shift-reduce reflects the two main actions performed by an LR parser.

1.2.1 LR(0) Parsers

LR(0) parsers are the simplest LR parsers.

In grammar, a special symbol $ is used to indicate end-of-input.

LR(0) items

An LR(0) item indicates how much of a rule has been seen, e.g. the item E — E+-int indicates we have
seen an expression and a plus sign, and hope to encounter an integer next.

LR(0) Items are used as states of a finite automation that maintain information about the progress of a
shift-reduce parse.

We can build NFA from LR(0) items, then build DFA using subset construction Transforming From NFA
to DFA: Subset Construction.

1.2. LR PARSING

Grammar

E'— E

ri: E—= E ‘4

P

r2: E — int

Items

-

mmmmmmm
TR R

T
For each terminal transition X — Y

e E
E e
® E + int
Ee® + int
E + o jnt
E + int e
e nt
int ®

Figure 1.2: Building NFA from LR(0) Items

int

int

int

N
For each non-terminal transition X — Y

For each state X containing the item R’ — ..

For each state X containing an item R — ..

add P [X, T]

add P |X, N|

E'—-E

E'— E-

E —-+E +int

E— E=*+int

E—-E+-int

E—-E+int-

E — +int

E —=int~

for every terminal T where N is R's rule number

Note:

For LR(0) parsers if there is more
than one action for a table row
then the grammar is not LR(0D),
e.g. we may have a shift and a
reduce (shift-reduce conflict) or
two reduces (reduce-reduce
conflict). Blank cells indicate an

e add P [x, $]

o addP X, T)

sY (shift Y)

gY (goto Y)

a (accept)

rN (reduce)

State ACTION GOTO
int + $. E
0 EL gl
1 82 a
2 83
3 ri rl ri
4 r2 r2 r2

Figure 1.3: DFA to LR(0) Parsing Table

8 CHAPTER 1. LEXICAL & SYNTAX ANALYSIS

LR(1) Parsing Table

State l ACTION GOTO
, EERE :
E—E $ 0 I s2 l | gl
rl: E > E 4" int 1 S =
r2: E — int [2 | | = =
0| 1N | | e
4
Stack] Tokens Action
'9 .T[-".'.:.'] = 52 E
02 | [Trz,9 = r2, pop 1 elem, push T[0,E] v rl
01 . T[1,+] = s3 E
013 [‘T['M'--’-'] = 84 2|
0134 T(4,%] = r1, pop 3 elems, push T[0,E) v v v
0 1 T(1,$] = a int+int$

Figure 1.4: LR Parsing Example

1.2.2 DFA to LR(0) Parsing Table

1.2.3 Model of an LR Parser

For a stream of input tokens, LR parser maintains a stack of states.
Initially, push state 0 to the stack. Then repeatedly follow the switch statement by looking up the

Parsing Table.

shift Sn Push state n onto stack. Advance current token.

reduce Rn Remove L elements from the stack where L = length of RHS of rule n. Push a goto n

action. reduce also generates an AST node for the rule.
accept a Accept input stream (parse was successful)
error Report error

goto Gn Push ParsingTable[Stack[Top|, LHS of [R]]

See https://imperial.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=b12a0301-7f1d-466

video for detailed explanations.

1.2.4 Different LR Parsers

LR(0) A reduce item X — A- always causes a reduction.

SLR(1) A reduce item X — A- causes a reduction only if the current token is in FOLLOW (X)), i.e. can

follow A somewhere in the grammar.

https://imperial.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=b12a0301-7f1d-4667-a049-ae0b01685aab

1.2. LR PARSING 9

LR(1) A reduce item X — A-,t causes a reduction only if the current token is equal to the look-ahead

token t.

LALR(1) Like LR(1) but combines LR(1) states that differ in look-ahead token of the item only.

1.2.5 FIRST and FOLLOW sets

FIRST set for a sequence of rules (non-terminals) and tokens (terminals) «;, is the set of all tokens that

could start a derivation of «, plus € if a could derive e.

FOLLOW set for a rule A is the set of all tokens that could immediately follow A, plus $ if A can

end the input.

FIRST set for token T is T', for € is e. FOLLOW sets does not contain e (not sensible).

Constructing FIRST sets

FIRST(A) can be computed by iterating rules of A:
For A — B|C|Dle:

e For each alternatives:

— If B is a token, add B.

— If B is a rule, add FIRST(B).

e A can be ¢, so add € in FIRST set.

Constructing FOLLOW sets

FOLLOW (A) can be computed by iterating rules that has A in its RHS:
o For each B — C A, include FOLLOW(B).
e For each B— C A D:

— Since D follows A, include tokens that can start derivation of D, i.e. FIRST(D).

— If D can be €, which means the rule can be B — C A, include FOLLOW(B).

e Also add $ if B can end input.

Alternative Video Tutorial

Watch lecture video at 2:42 for how to derive FIRST set. Watch at 6:06 for how to derive FOLLOW set.

https://imperial.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=d0683a04-2922-4409-a1cf-ae0b01697744

10 CHAPTER 1. LEXICAL & SYNTAX ANALYSIS
1.2.6 LR(1) Parsers
LR(1) Items

An LR(1) item is a pair [LR(0)item, t].

1.3 LL Parsing

A grammar can be LL(1) iff:

e For each distinct pairs of alternatives («, 3) of a rule A — « | 8, FIRST(«) and FIRST(3) are

disjoint, i.e. the tokens that could start « are distinct from the token that could start 5.

e and,

— If FIRST () contains € then FIRST(5) and FOLLOW(A) are disjoint.

— and, if FIRST(3) contains € then FIRST(«) and FOLLOW (A) are disjoint.

More generally speaking, LL(1) rules must be unambiguous, and not left recursive.

1.3.1 Backus-Naur Form

The rules for a context free grammar take the following canonical form:

A— «

where A is a rule and « is possibly empty sequence of rules and tokens.
BNF extends the canonical form, such that alternations A — «|f can be used to replace A — « and

A— .

1.3.2 Extended BNF

EBNF extends BNF with rules:

o «: 0 or more occurrences of a (Repetition)
e [a]: 0 or 1 occurrences of a (Optional)

o (a): a. Useful for grouping. (Grouping)

1.3. LL PARSING

1.3.3 Grammar to LL Parse Functions
Convert body of a rule according to the mappings:
e Rule A to A()

o Terminal T' to match(T)

Body of Rule | Mapped Code

AB AQ); B();

when (token) {
in FIRST(A) —> A()
in FIRST(B) —> B()

A|B
// So FIRST(A) and FIRST(B) must be disjoint
else — error ()
}
A while (token in FIRST(A)) A()
// So FIRST(A) must be disjoint with what follows {A}
(4] if (token in FIRST(A)) A()

// So FIRST(A) must be disjoint with what follows [A]

1.3.4 Context Free Grammar to LL Parse Functions
Left Factorisation
Common prefix in alternatives can be left-factorised:

« EBNF:

-~ A—-BC|BDcanbe A— B (C| D)

— A—BC|Bcanbe A— B [C]
o BNEF:

—A—-BC|BDcambeA—-BX,X—C|D

—A—-BC|Bcanbe A-BX, X —C|e¢

Substitution

Substitution is replacing a rule A with its alternatives, which possibly enabled

Example:

12 CHAPTER 1. LEXICAL & SYNTAX ANALYSIS

Statement —> Assignment | ProcCall | pass

Assignment —> id ’=’ Expr

ProcCall — id ’(’ Expression)’
Substituting Assignment and ProcCall:

Statement —> id ’'=’ Expr | id ’(’ Expression ’)’ | pass
Then left-factor id:

Statement —> id ('=" Expr | ’'(’ Expression ’)’) | pass

So we are able to left-factor some rules by using substitution. Note that we have changed the structure
of our grammar. A grammar generator should still generate proper AST for Assignment and ProcCall

using the left-factorised LL(1) grammar.

Left-Recursion Removal

The example shows how to perform direct left-recursion removal:
A—>X]AY

By expanding the rule second alternative of rule A:
AY = AYY = AYYY =>

So we can remove the direct left-recursion:
A—>X]|AY = A->X{Y}

Note that this may change associativity. We need to ensure correct associativity when constructing

AST.

Error Recovery

If error recovery is attempted, skip as little as possible in order to parse as much of the remaining code
as possible. We should also generate helpful error messages.

If error correction is attempted, ensure the corrected program has the same syntax tree and semantics.

Panic-mode Error Recovery

In Panic-mode Error Recovery we provide each parse function an additional parameter a set of
synchronizing tokens, i.e. syncset.
As parsing proceeds, additional tokens added to the syncset when calling other parse functions.

When error occurs we skip ahead discarding tokens until one of the synchronising token is seen.

1.3. LL PARSING 13

A common heuristic is to add all tokens in FOLLOW(A) to the syncset for a rule A. If A occurs in an
‘outer’ construct then we also add First set of the outer construct.

Example:

ifStatement — if exprl then expr2 else expr3 fi
expr —> ifStatement | beginStatement | printStatement
beginStatement —> begin

printStatement —> print

Suppose we see an unwanted token after seeing then (i.e. we are pasing expr2), we would discard tokens
ahead until we see else. So syncset for parsing expr2 should be else.

When parsing expr2 (an expr), we would expect to see if, begin, or print (expectset).

So we check if current token is either in expectset —in which case we proceed parsing an expr, or we

skip until syncset —to recover error.

	Lexical & Syntax Analysis
	Finite Automata
	Deterministic Finite Automata
	Non-Deterministic Finite Automata
	Transforming From RegExp to NFA: Thompson's Construction
	Transforming From NFA to DFA: Subset Construction

	LR Parsing
	LR(0) Parsers
	DFA to LR(0) Parsing Table
	Model of an LR Parser
	Different LR Parsers
	FIRST and FOLLOW sets
	LR(1) Parsers

	LL Parsing
	Backus-Naur Form
	Extended BNF
	Grammar to LL Parse Functions
	Context Free Grammar to LL Parse Functions

