Introduction to Database

Transactions

ACID Properties

Atomicity all or nothing
Consistency consistent before and after

Isolation independent of any other transaction
Durability completed transaction are durable

Examples for ACID properties:

Atomicity

When system crashes while a transaction is performing, the change will be undone on next restart.

Consistency

Changes must be made to all connected tables;

No duplicated primary keys.

Isolation

When a cash transfer is in progress, just after the amount is removed from the sender’s account,
system sums the cash in the bank.

Isolation ensures the result to be correct.

Durability

System informed the user that the cash transfer has been done, but it crashes while a transaction is
performing.
On next restart, system must continue to process the half transaction to ensure the information given to
user is correct.

(Or system can inform the user only if the transaction is really done).

The Relational Data Model

Relations
Relations take the form R(A, B, ...) where
e R - name of the relation
e A, B - set of attributes

— A, B,C can also be written as AB
— arity - number of attributes n of the relation
— Domain(A) - set of values that the attribute can have

— Attrs(R) returns ‘AB*

« extent of R(AB) is set of tuples {(v{',vf), (vs',vF), (v§', vF), ...}

Example:
account
no type sortcode
100 | ‘current’ 67
101 | ‘deposit’ 67
103 | ‘current’ 34
107 | ‘current’ 56
119 | ‘deposit’ 56
125 | ‘current’ 56

e Relation, R: the table, e.g. ‘account’

o Attributes: the columns ‘no’, ‘type’ and ‘sortcode’

e Arity = number of attributes = 3

o Twuple: the pair of the 3 values in each row, e.g. (100, ‘current’,67)
o Domain(type) = {‘current’, ‘deposit’}

o Domain(no) = {100,101, 103,107,119, 125}

o Domain(sortcode) = {67,34,56}

o Attrs(R) = {no, type, sortcode}

Keys

A key of a relation R(AB) is a subset of the attributes for which the values in any extent are unique

across all tuples.

o violated key - there being two tuples in the extent which have the same values for the attributes of

the key. (i.e. duplicated)
e minimal key - set of attributes AB ..for which no subset of the attributes is also a key
e primary key - the default key when no key explicitly stated

o foreign key - R (%) kg () y is a key of S

account(sortcode) L branch(sortcode)
account
no type sortcode
branch
100 | ‘current’ 67
sortcode | cash
101 | ‘deposit’ 67
56 132456
103 | ‘current’ 34
34 97836
107 | ‘current’ 56
67 45000
119 | ‘deposit’ 56
125 | ‘current’ 56

sortcode is a foreign key.

The Relational Algebra

Primitive operators of the Relational Algebra

Symbol Name in RA Type

s Project Unary

o Select Unary

X Cartesian Product | Binary

U Union Binary

— Difference Binary
Project 7

Project is just like slicing the table.

Project returns sets which contain no duplicates.

project ;& E AN, select EFRITH .

Tsortcode as id can change the name of the attribute.

account Tho,type ACCOUNt
no type sortcode no type
Tsortcodeasid account
100 | ‘current’ 67 100 ‘current’ -
101 | ‘deposit’ 67 101 ‘deposit’ d
103 | ‘current’ 34 103 ‘current’ i
107 | ‘current’ 56 107 ‘current’ i
119 | ‘deposit’ 56 119 ‘deposit’ o7
125 | ‘current’ 56 125 ‘current’
Select o
Select is like ‘filter’.
Note that the selection expression must be valid.
account
no type rate | sortcode
100 | ‘current’ | NULL 67 Orate>0 account
101 | ‘deposit’ | 5.25 67 no type rate | sortcode
103 | ‘current’ | NULL 34 101 | ‘deposit’ | 5.25 67
107 | ‘current’ | NULL 56 119 | ‘deposit’ | 5.50 56
119 | ‘deposit’ | 5.50 56
125 | ‘current’ | NULL 56

Multiple conditions can be written with methematical logical operators:

Obranch.sortcode=account.sortcodeAaccount.type="‘current’

Product x

Multiplies two tables. Disambiguation is done by specifying ‘table.attr’.

A 3-row table x a 2-row table gives a result table of 6 rows.

account x bccount
account.no | sortcode | bccount.no type

account

bccount 100 67 101 ‘deposit’
no | sortcode

no type 100 67 119 ‘current’

100 67
101 | ‘deposit’ 101 67 101 ‘deposit’

101 67
119 | ‘current’ 101 67 119 ‘current’

103 34
103 34 101 ‘deposit’
103 34 119 ‘current’

Union U

Merging two tables with exactly same attributes, which is called union compatible.

account U bccount
account no sortcode
bccount
no | sortcode 100 67
no | sortcode
100 67 101 67
104 77
101 67 103 34
119 95
103 34 104 it
119 95

Difference —

Differing two tables with exactly same attributes.

account
bccount
no account — bccount
no
100 no
100
101 103
101
103

Intersection N

Find the common part of the two tables.

Division =

D = Attr(R) — Attr(S)

R+-S=#npR—7mp (WDRXS)*R

Derived Operators

Natural Join

Natural Join is a combination of Cartesian Product and Select of their common primary key, as

expressed:

Example:

RS =0g a,=S A, .AR.A,,

—s.a, RxS

branch <1 account = Tpranch.sortcode—account.sortcodedranch X account

So there won’t be two attributes ‘sortcode’ from both of the tables.

Example: Add the branch to account with same sortcode, as shown:

account <1 branch

account
no name sortcode
100 Alice 67
101 Bob 67
103 | Catherine 34

branch
sortcode | cash
67 97340
34 8900

Semi Join

Example:

account X movement = account X T, (movement)

no name sortcode | cash
100 Alice 67 97340
101 Bob 67 97340
103 | Catherine 34 8900

R % S = R} Tapr(rynatr(s)(S)

Theta Join

R4S =0yR x S

Equi Join

RAEQBS:UR.A:S_BRX S

SQL Data Definition Language

Definition of Tables

CREATE TABLE branch(
sortcode INTEGER NOT NULL,
bname VARCHAR (20) NOT NULL,
cash DECIMAL (10, 2) NOT NULL
);
CREATE TABLE account(
no INTEGER NOT NULL,
type VARCHAR(8) NOT NULL,
cname VARCHAR (20) NOT NULL,
rate DECIMAL (4, 2) NULL,
sortcode INTEGER NOT NULL,
CONSTRAINT account_pk PRIMARY KEY (mno),
CONSTRAINT account_fk FOREIGN KEY (sortcode) REFERENCES branch

Declaring Primary Keys after table creation

ALTER TABLE branch
ADD CONSTRAINT branch_pk PRIMARY KEY (sortcode);

Declaring Secondary Keys for a table

CREATE UNIQUE INDEX branch_bname_key ON branch(bname) ;

SQL Data Manipulation Language

RA Operator SQL Expression
T SELECT DISTINCT
o WHERE
Ry X Ry FROM R;, R; or FROM R; CROSS JOIN R,
Ri < R, FROM R; NATURAL JOIN R,
Ry 24 R, FROM R, JOIN R, ON 0
R, — R, R, EXCEPT R,
RIUR, R; UNION R,
RiNR,y R INTERSECT R,

Mixed examples:

To list people with a current and a deposit account,

SELECT current_account.cname,
current_account.no AS current_no,
deposit_account.no AS deposit_no

FROM account AS current_account
JOIN account AS deposit_account
ON current_account.cname=deposit_account.cname
AND current_account.type='current'

AND deposit_account.type='deposit';

Below are more detailed examples for each operators.

Changing Data

INSERT INTO account
VALUES (100, 'current', 'McBrien, P.', NULL, 67),
(101, 'deposit', 'McBriemn, P.', 5.25, 67);

UPDATE account
SET type='deposit'
WHERE no=100;

DELETE
FROM account

WHERE no=100;

Selecting Data

Corresponds to RA Projection (7).

SELECT * FROM account;
SELECT account.* FROM account NATURAL JOIN branch;

RA 7 is distinct while SQL SELECT is not.
4B = ‘SELECT DISTINCT A FROM B;. When attribute A is the primary key, ‘DISTINCT’ can

be omitted since its already distinct.

SELECT no FROM account;
SELECT DISTINCT type FROM account;

Binary operators between SELECT statements
UNION RA U
EXCEPT RA —

INTERSECT RA N

Note that tables must be union compatible.

SELECT no FROM account
EXCEPT
SELECT no FROM movement;

SQL Join

CLASSIC JOIN
SELECT branch.*, no, type
FROM branch, account

WHERE branch.sortcode = account.sortcode;

Modern JOIN
SELECT branch.*, no, type
FROM branch JOIN account

ON branch.sortcode = account.sortcode;

Special Natural Join
SELECT x*
FROM branch NATURAL JOIN account

Another Special Natural Join
SELECT branch.*, no, type
FROM branch JOIN account USING (sortcode)

Note that tables must be union compatible.

SQL Set Operations

Simple filtering

SELECT =
FROM account
WHERE type='current'
AND no IN (100, 101)

This ‘SELECT”’ returns ‘no = 100’ or ‘no = 101’ only.

Negating IN

SELECT =

FROM account

WHERE type='current'

AND no NOT IN (100, 101)

Nested selection

SELECT x*
SELECT DISTINCT account.no

FROM account
FROM account JOIN movement

WHERE type='current'

ON account.no=movement.no

AND no IN (SELECT no
WHERE type='current'

FROM movement
AND amount>500

WHERE amount > 500)

10

Selection EXISTS

SELECT DISTINCT cname
SELECT DISTINCT cname
FROM account
FROM account
WHERE NOT EXISTS(
WHERE cname NOT IN(
SELECT *

SELECT cname
FROM account AS a2
FROM account
WHERE type='deposit'
WHERE type = 'deposit'
AND account.cname=cname

Correlated Subquery

A correlated subquery contains a reference to the columns of the outer query.

Result is as if the subquery were executed for each row considered by the ‘WHERE’ clause.

SELECT DISTINCT cname
FROM account AS al
WHERE NOT EXISTS(
SELECT =
FROM account AS a2
WHERE type='deposit'

AND al.cname=a2.cname

SQL SOME and ALL
SOME returns true if there is at least one matching.

ALL returns true if all values match.

names of branches that only have current accounts

SELECT bname
FROM branch
WHERE 'current' = ALL(
SELECT type FROM account WHERE branch.sortcode=account.sortcode
)

names of branches that have deposite accounts

11

SELECT bname
FROM branch
WHERE 'deposit' = SOME(
SELECT type FROM account WHERE branch.sortcode=account.sortcode
)

SQL Nulls

SQL implements three valued logic

Comparing NULL in SQL Queries
‘WHERE rate = NULL’ and ‘WHERE rate <> NULL’ are wrong.

Use ‘WHERE rate IS NULL’ and ‘WHERE rate IS NOT NULL’ instead.

Testing for logical truth value

SELECT no
FROM account

WHERE (rate=5050) IS NOT TRUE

NULL means Might Be

Comparing NULL with a exact value yields a UNKNOWN, which means ‘Might Be’.

In ‘WHERE’ clauses, ‘rate=5.25" accepts the NULL rates.

‘WHERE (rate=5.25) IS NOT FALSE’ allows Might Be while ‘WHERE (rate=5.25) IS TRUE’ or
simply ‘WHERE (rate=5.25)" don’t.

12

Equivalences Between EXCEPT, NOT IN and NOT EXISTS

13

