
Introduction to Database

Transactions

ACID Properties

Atomicity all or nothing

Consistency consistent before and after

Isolation independent of any other transaction

Durability completed transaction are durable

Examples for ACID properties:

Atomicity

When system crashes while a transaction is performing, the change will be undone on next restart.

Consistency

Changes must be made to all connected tables;

No duplicated primary keys.

Isolation

When a cash transfer is in progress, just after the amount is removed from the sender’s account,

system sums the cash in the bank.

Isolation ensures the result to be correct.

Durability

System informed the user that the cash transfer has been done, but it crashes while a transaction is

performing.

On next restart, system must continue to process the half transaction to ensure the information given to

user is correct.

(Or system can inform the user only if the transaction is really done).

1



The Relational Data Model

Relations

Relations take the form R(A,B, . . .) where

• R - name of the relation

• A,B - set of attributes

– A,B,C can also be written as AB

– arity - number of attributes n of the relation

– Domain(A) - set of values that the attribute can have

– Attrs(R) returns ‘AB‘

• extent of R(AB) is set of tuples
{
⟨vA1 , vB1 ⟩, ⟨vA2 , vB2 ⟩, ⟨vA3 , vB3 ⟩, . . .

}
Example:

account

no type sortcode

100 ‘current’ 67

101 ‘deposit’ 67

103 ‘current’ 34

107 ‘current’ 56

119 ‘deposit’ 56

125 ‘current’ 56

• Relation, R: the table, e.g. ‘account’

• Attributes: the columns ‘no’, ‘type’ and ‘sortcode’

• Arity = number of attributes = 3

• Tuple: the pair of the 3 values in each row, e.g. (100, ‘current′, 67)

• Domain(type) = {‘current′, ‘deposit′}

• Domain(no) = {100, 101, 103, 107, 119, 125}

• Domain(sortcode) = {67, 34, 56}

• Attrs(R) = {no, type, sortcode}

2



Keys

A key of a relation R(AB) is a subset of the attributes for which the values in any extent are unique

across all tuples.

• violated key - there being two tuples in the extent which have the same values for the attributes of

the key. (i.e. duplicated)

• minimal key - set of attributes AB …for which no subset of the attributes is also a key

• primary key - the default key when no key explicitly stated

• foreign key - R (x⃗)
fk⇒ S (y⃗) y is a key of S

account(sortcode)
fk⇒ branch(sortcode)

account

no type sortcode

100 ‘current’ 67

101 ‘deposit’ 67

103 ‘current’ 34

107 ‘current’ 56

119 ‘deposit’ 56

125 ‘current’ 56

branch

sortcode cash

56 132456

34 97836

67 45000

sortcode is a foreign key.

The Relational Algebra

Primitive operators of the Relational Algebra

Symbol Name in RA Type

π Project Unary

σ Select Unary

× Cartesian Product Binary

∪ Union Binary

− Difference Binary

Project π

Project is just like slicing the table.

Project returns sets which contain no duplicates.

3



project 是管理列的，select 管理行的。

πsortcode as id can change the name of the attribute.
account

no type sortcode

100 ‘current’ 67

101 ‘deposit’ 67

103 ‘current’ 34

107 ‘current’ 56

119 ‘deposit’ 56

125 ‘current’ 56

πno,type account

no type

100 ‘current’

101 ‘deposit’

103 ‘current’

107 ‘current’

119 ‘deposit’

125 ‘current’

πsortcodeasid account

id

56

34

67

Select σ

Select is like ‘filter’.

Note that the selection expression must be valid.
account

no type rate sortcode

100 ‘current’ NULL 67

101 ‘deposit’ 5.25 67

103 ‘current’ NULL 34

107 ‘current’ NULL 56

119 ‘deposit’ 5.50 56

125 ‘current’ NULL 56

σrate>0 account

no type rate sortcode

101 ‘deposit’ 5.25 67

119 ‘deposit’ 5.50 56

Multiple conditions can be written with methematical logical operators:

σbranch.sortcode=account.sortcode∧account.type=‘current′

Product ×

Multiplies two tables. Disambiguation is done by specifying ‘table.attr’.

A 3-row table × a 2-row table gives a result table of 6 rows.

4



account

no sortcode

100 67

101 67

103 34

bccount

no type

101 ‘deposit’

119 ‘current’

account × bccount

account.no sortcode bccount.no type

100 67 101 ‘deposit’

100 67 119 ‘current’

101 67 101 ‘deposit’

101 67 119 ‘current’

103 34 101 ‘deposit’

103 34 119 ‘current’

Union ∪

Merging two tables with exactly same attributes, which is called union compatible.

account

no sortcode

100 67

101 67

103 34

bccount

no sortcode

104 77

119 95

account ∪ bccount

no sortcode

100 67

101 67

103 34

104 77

119 95

Difference −

Differing two tables with exactly same attributes.
account

no

100

101

103

bccount

no

100

101

account − bccount

no

103

Intersection ∩

Find the common part of the two tables.

Division ÷

D = Attr(R)−Attr(S)

R÷ S = πDR− πD (πDR× S)−R

5



Derived Operators

Natural Join ▷◁

Natural Join is a combination of Cartesian Product and Select of their common primary key, as

expressed:

R ▷◁ S = σR.A1=S.A1∧...∧R.Am=S.Am
R× S

Example:

branch ▷◁ account = σbranch.sortcode=account.sortcodebranch× account

So there won’t be two attributes ‘sortcode’ from both of the tables.

Example: Add the branch to account with same sortcode, as shown:
account

no name sortcode

100 Alice 67

101 Bob 67

103 Catherine 34

branch

sortcode cash

67 97340

34 8900

account ▷◁ branch

no name sortcode cash

100 Alice 67 97340

101 Bob 67 97340

103 Catherine 34 8900

Semi Join

R⋉ S = R ▷◁ πAttr(R)∩Attr(S)(S)

Example:

account⋉movement = account ▷◁ πno(movement)

6



Theta Join

R
θ
▷◁ S = σθR× S

Equi Join

R
A=B
▷◁ S = σR.A=S.BR× S

SQL Data Definition Language

Definition of Tables

CREATE TABLE branch(

sortcode INTEGER NOT NULL,

bname VARCHAR(20) NOT NULL,

cash DECIMAL(10, 2) NOT NULL

);

CREATE TABLE account(

no INTEGER NOT NULL,

type VARCHAR(8) NOT NULL,

cname VARCHAR(20) NOT NULL,

rate DECIMAL(4, 2) NULL,

sortcode INTEGER NOT NULL,

CONSTRAINT account_pk PRIMARY KEY (no),

CONSTRAINT account_fk FOREIGN KEY (sortcode) REFERENCES branch

)

Declaring Primary Keys after table creation

ALTER TABLE branch

ADD CONSTRAINT branch_pk PRIMARY KEY (sortcode);

Declaring Secondary Keys for a table

CREATE UNIQUE INDEX branch_bname_key ON branch(bname);

7



SQL Data Manipulation Language

RA Operator SQL Expression

π SELECT DISTINCT

σ WHERE

R1 ×R2 FROM R1, R2 or FROM R1 CROSS JOIN R2

R1 ▷◁ R2 FROM R1 NATURAL JOIN R2

R1
θ
▷◁ R2 FROM R1 JOIN R2 ON θ

R1 −R2 R1 EXCEPT R2

R1 ∪R2 R1 UNION R2

R1 ∩R2 R1 INTERSECT R2

Mixed examples:

To list people with a current and a deposit account,

SELECT current_account.cname,

current_account.no AS current_no ,

deposit_account.no AS deposit_no

FROM account AS current_account

JOIN account AS deposit_account

ON current_account.cname=deposit_account.cname

AND current_account.type='current'

AND deposit_account.type='deposit';

Below are more detailed examples for each operators.

Changing Data

INSERT INTO account

VALUES (100, 'current', 'McBrien, P.', NULL, 67),

(101, 'deposit', 'McBrien, P.', 5.25, 67);

UPDATE account

SET type='deposit'

WHERE no=100;

DELETE

FROM account

WHERE no=100;

8



Selecting Data

Corresponds to RA Projection (π).

SELECT * FROM account;

SELECT account.* FROM account NATURAL JOIN branch;

RA π is distinct while SQL SELECT is not.

πAB = ‘SELECT DISTINCT A FROM B;’. When attribute A is the primary key, ‘DISTINCT’ can

be omitted since its already distinct.

SELECT no FROM account;

SELECT DISTINCT type FROM account;

Binary operators between SELECT statements

UNION RA ∪

EXCEPT RA −

INTERSECT RA ∩

Note that tables must be union compatible.

SELECT no FROM account

EXCEPT

SELECT no FROM movement;

SQL Join

CLASSIC JOIN

SELECT branch.*, no, type

FROM branch, account

WHERE branch.sortcode = account.sortcode;

Modern JOIN

SELECT branch.*, no, type

FROM branch JOIN account

ON branch.sortcode = account.sortcode;

Special Natural Join

SELECT *

FROM branch NATURAL JOIN account

9



Another Special Natural Join

SELECT branch.*, no, type

FROM branch JOIN account USING (sortcode)

Note that tables must be union compatible.

SQL Set Operations

Simple filtering

SELECT *

FROM account

WHERE type='current'

AND no IN (100, 101)

This ‘SELECT’ returns ‘no = 100’ or ‘no = 101’ only.

Negating IN

SELECT *

FROM account

WHERE type='current'

AND no NOT IN (100, 101)

Nested selection

SELECT *

FROM account

WHERE type='current'

AND no IN (SELECT no

FROM movement

WHERE amount > 500)

≡

SELECT DISTINCT account.no

FROM account JOIN movement

ON account.no=movement.no

WHERE type='current'

AND amount >500

‘

10



Selection EXISTS

SELECT DISTINCT cname

FROM account

WHERE cname NOT IN(

SELECT cname

FROM account

WHERE type = 'deposit'

)

≡

SELECT DISTINCT cname

FROM account

WHERE NOT EXISTS(

SELECT *

FROM account AS a2

WHERE type='deposit'

AND account.cname=cname

)
‘

Correlated Subquery

A correlated subquery contains a reference to the columns of the outer query.

Result is as if the subquery were executed for each row considered by the ‘WHERE’ clause.

SELECT DISTINCT cname

FROM account AS a1

WHERE NOT EXISTS(

SELECT *

FROM account AS a2

WHERE type='deposit'

AND a1.cname=a2.cname

)

SQL SOME and ALL

SOME returns true if there is at least one matching.

ALL returns true if all values match.

names of branches that only have current accounts

SELECT bname

FROM branch

WHERE 'current' = ALL(

SELECT type FROM account WHERE branch.sortcode=account.sortcode

)

names of branches that have deposite accounts

11



SELECT bname

FROM branch

WHERE 'deposit' = SOME(

SELECT type FROM account WHERE branch.sortcode=account.sortcode

)

SQL Nulls

SQL implements three valued logic

Comparing NULL in SQL Queries

‘WHERE rate = NULL’ and ‘WHERE rate <> NULL’ are wrong.

Use ‘WHERE rate IS NULL’ and ‘WHERE rate IS NOT NULL’ instead.

Testing for logical truth value

SELECT no

FROM account

WHERE (rate=5050) IS NOT TRUE

NULL means Might Be

Comparing NULL with a exact value yields a UNKNOWN, which means ‘Might Be’.

In ‘WHERE’ clauses, ‘rate=5.25’ accepts the NULL rates.

‘WHERE (rate=5.25) IS NOT FALSE’ allows Might Be while ‘WHERE (rate=5.25) IS TRUE’ or

simply ‘WHERE (rate=5.25)’ don’t.

12



Equivalences Between EXCEPT, NOT IN and NOT EXISTS

13


