
Models of Computation

1 Operational Semantics of Expressions

1.1 Big-step Semantics

Big-step, or natural, operational semantics ignores the intermediate steps and gives the result immedi-

ately.

Deteminacy An expression only evaluates to one value. ∀E, n1, n2.[E ⇓ n1 ∧ E ⇓ n2 → n1 = n2]

Totallity Every expression evaluates to some value. ∀E.∃n.[E ⇓ n]

1.1.1 Example: definition of B-ADD

(B-ADD)
E1 ⇓ n1 E2 ⇓ n2

E1 + E2 ⇓ n3

n3 = n1 + n2

where B−ADD is a label for human reference.

It means that if E1 evaluates to n1, and E2 evaluates to n2, then E1 + E2 evaluates to n3. So we have

n3 = n1 + n2.

1.1.2 Example: derivation tree

(B-ADD)
(B-ADD) (B-NUM) 4⇓4 (B-NUM) 1⇓1

(4+1)⇓5 (B-ADD) (B-NUM) 2⇓2 (B-NUM) 2⇓2

(2+2)⇓4

((4 + 1) + (2 + 2)) ⇓ 9

1.2 Small-step Semantics

Small-step, or structural, operational semantics gives a method for evaluating an expression step-by-step.

Deteminacy ∀E,E1, E2 .[E → E1 ∧ E → E2 → E1 = E2].

Confluence For all E,E1, E2, if E→∗E1 and E→∗E2, then there exists E′ such that E1→∗E′ and

E2→∗E′.

1



Weak Normalisation For any expression E1, there exists a finite sequence of expressions E2, . . . , Ek

such that, Ek is in normal form, and for all i ∈ [1..k).Ei → Ei+1. (Every expression finally executes

to an expression in normal form)

Strong Normalisation There are no infinite sequences of expressions E1, E2, E3, . . . such that, for all

i, E1 → Ei+1. (Every execution chain terminates)

Unique Normal Form For all E, n1, n2, if E→∗n1 and E→∗n2 then n1 = n2.

Strong Normalisation implies weak normalisation.

Theorem For all E and n, E ⇓ n iff E→∗n.

1.2.1 Examples

(S-LEFT)
E1 → E′

1

E1 + E2 → E′
1 + E2

(S-RIGHT)
E1 → E′

n + E → n + E′

(S-ADD)
n1 + n2 → n3

n3 = n1 + n2

S−LEFT defines a way to ‘simplify’ the left operand of the ADD expression.

S−RIGHT does that for the operand on the right-hand-side.

S−ADD defines how to finally evaluate the simplified ADD expression, as all expressions evaluates to a

number in this example language.

1.3 Many Steps of Evaluation

E→∗E′ holds iff either E = E′ or there is a finite sequence

E → E1 → E2 → . . . → Ek → E′

The relation →∗ is called the reflexive transitive closure of →.

Number n is the final answer of E if E→∗n.

1.4 Normal Form

Normal Form An expression E is in normal form (and said to be irreducible) if there is no E′ such

that E → E′.

Theorem The normal forms of the expressions are the numbers.

2



2 Operational Semantics of Commands

2.1 States

state is a partial function from variables to numbers such that s(x) is defined for finitely many x.

s[x 7→ 7] means a new state overriding value of x to 7, and inheriting other values from s.

Example:

s = (x 7→ 4, y 7→ 5, z 7→ 6)

describes a partial function where variable x has value 4, y has value 5, z has value 6.

s[x 7→ 7](x) = 7

s[y 7→ 10](y) = 10

s[v 7→ 17](v) = 17

s[v 7→ 17](y) = 5

2.2 Semantics of The Example Language

2.2.1 Expressions

(W-EXP.LEFT)
〈E1, s〉→e

⟨
E

′

1, s
′⟩

〈E1 + E2, s〉→e 〈E
′
1 + E

′
2, s

′〉

(W-EXP.RIGHT)
〈E, s〉→e

⟨
E

′
, s

′⟩
〈n + E, s〉→e 〈n + E′ , s′〉

(W-EXP.VAR)
〈x, s〉→e 〈n, s〉

s(x) = n

(W-EXP.ADD)
〈n1 + n2, s〉→e 〈n3, s〉

n3 = n1 + n2

2.2.2 Assignments

(W-ASS.EXP)
〈E, s〉→c

⟨
E

′
, s

′⟩
〈x := E, s〉→c 〈x := E′ , s′〉

(W-ASS.NUM)
〈x := n, s〉→c 〈skip, s[x 7→ n]〉

3



2.2.3 Sequential Composition

(W-SEQ.LEFT)
〈C1, s〉→c

⟨
C

′

1, s
′⟩

〈C1;C2, s〉→c 〈C
′
1;C2, s

′〉

(W-SEQ.SKIP)
〈skip;C2, s〉→c 〈C2, s〉

2.2.4 Conditional

(W-COND.TRUE)
〈if true then C1 else C2, s〉→c 〈C1, s〉

(W-COND.FALSE)
〈if false then C1 else C2, s〉→c 〈C2, s〉

(W-COND.BEXP) 〈B, s〉→c 〈B′, s′〉
〈if B then C1 else C2, s〉→c 〈if B′ then C1 else C2, s′〉

2.2.5 While

(W-WHILE)
〈while B do C, s〉→c 〈if B then (C;while B do C) else skip, s〉

2.3 Properties of →c

→c is deterministic and confluent.

deterministic : If 〈C, S〉→c 〈C ′
1, S

′
1〉 and 〈C, S〉→c 〈C ′

2, S
′
2〉 then 〈C ′

1, S
′
1〉 = 〈C ′

2, S
′
2〉

confluent : If 〈C, S〉→c 〈C ′
1, S

′
1〉 and 〈C, S〉→c 〈C ′

2, S
′
2〉 then 〈C ′

1, S
′
1〉→c 〈C ′

3, S
′
3〉 and 〈C ′

2, S
′
2〉→c 〈C ′

3, S
′
3〉

2.4 Configurations

Configuration A configuration 〈skip, s〉 is an answer configuration.

Normal Forms A configuration is in normal form if there is no rule for executing its expression. So an

answer configuration is in normal form.

2.4.1 Stuck Configurations

Stuck Configuration A configuration 〈y, (x 7→ 3)〉 is a stuck configuration because y cannot be

evaluated in the context (x 7→ 3).

4



A stuck configuration is also in normal form since there is no rule for executing the expression.

〈(x := y + 1), (x 7→ 3)〉 is stuck because y is not defined in the context.

〈(x < y), (x 7→ 3)〉 is not yet stuck, but it reduces to a stuck configuration.

3 Induction over derivations

3.1 Example: Proving by induction

Base case 1

To show

∀b ∈ B. [true ⇓ b ⇒ true→∗b]

Proof

Take b ∈ B arb.

true ⇓ b ass

b = true by 1, and

true→∗true ->* is reflective

Base case 2

To show

∀b ∈ B. [false ⇓ b ⇒ false→∗b]

Inductive case 1

Take B1, B2 ∈ Bool,

Inductive Hypothesis

• ∀b ∈ B. [B1 ⇓ b1 ⇒ B1→∗b1]

• ∀b ∈ B. [B2 ⇓ b2 ⇒ B2→∗b2]

To show

∀b ∈ B. [B1&B2 ⇓ b ⇒ B1&B2→∗b]

…omitted. See Coursework 1 for detailed example.

5



4 Register Machines

Register Machine is specified by

• finite many registers R0, R1, …, Rn, each capable of storing a natural number.

• a program consisting of a finite list of instructions of the form label : body where, for i =

0, 1, 2, . . ., the (i + 1)th instruction has label Li.

The instruction body takes the form:

• R+ → L′: add 1 to contents of register R and jump to instruction labelled L′.

• R- → L′, L′′: if contents of R is > 0, then subtract 1 and jump to L′, else jump to L′′.

• HALT stop executing instructions.

4.1 Configurations

A register machine configuration has the form:

c = (l, r0 . . . rn)

where l is current label and ri is current content of Ri.

Initial configuration is c0 = (0, r0 . . . rn)

4.2 Computations

A computation of a RM is a finite or infinite sequence of configurations:

c0, c1, c2, . . .

where c0 is an initial configuration, others determine next configurations

4.2.1 Halting Computations

A halting computation can either be proper or erroneous.

A proper halt is when reaching HALT . An erroneous halt is when reaching an undefined label.

4.3 Partial Functions

A partial function from set X to Y is specified by any subset f ⊆ X × y such that

(x, y) ∈ f ∧ (x, y′) ∈ f ⇒ y = y′

6



4.3.1 Partial Function Notations

• f(x) = y means (x, y) ∈ f

• f(x) ↓ means ∃y ∈ Y (f(x) = y)

• f(x) ↑ means ¬∃y ∈ Y (f(x) = y)

• X ⇀ Y means set of all partial functions from X to Y

• X → Y means set of all total functions from X to Y

4.3.2 Total Functions

A total function is a partial function that satisfies ∀x ∈ X. f(x) ↓

4.4 Computable functions

The partial function f ∈ Nn ⇀ N is computable is there is a register machine M with at least n + 1

registers, such that for all (x1 . . . xn) ∈ Nn and y ∈ N:

the computation of M starts with paring of R0 = 0, R1 = x1, . . . and all other registers set to 0, halts

with R0 = y

iff f(x1 . . . xn) = y.

4.5 Numerical Codings

4.5.1 Numerical Codings of Pairs

⟪x, y⟫ = 2x(2 ∗ y + 1)

< x, y > = 2x(2 ∗ y + 1)− 1

Binary representations:

0b⟪x, y⟫ = 0by 1 0 · · · 0

0b < x, y > = 0by 0 1 · · · 1

where there are x number of 0s or 1s.

7



4.5.2 Numerical Coding of Programs

For program P with L0 . . . Ln, ⌜P⌝ ≜ ⌜[⌜L0⌝, . . . ⌜Ln⌝]⌝.

• ⌜R+
i → Lj⌝ ≜ ⟪2i, j⟫

• ⌜R−
i → Lj , Lk⌝ ≜ ⟪2i + 1, < j, k >⟫

• ⌜HALT⌝ ≜ 0

4.5.3 Definition of Lists

An empty list is [] .

List is recursively constructed using cons: x :: l ∈ ListN if x ∈ N and l ∈ ListN

[x1 . . . xn] ≜ x1 :: (x2 :: (. . . :: (xn :: [])))

4.5.4 Numerical Coding of Lists

1. ⌜[]⌝ ≜ 0

2. ⌜x :: l⌝ ≜ ⟪x, ⌜l⌝⟫ = 2x(2· ⌜l⌝ + 1)

Thus, ⌜[x1 . . . xn]⌝ = ⟪x1, ⟪x2, · · · ⟪xn, 0⟫ · · ·⟫⟫.

Binary representations:

0b⌜[x1 . . . xn]⌝ = (1 0 · · · 0) (1 0 · · · 0) · · · (1 0 · · · 0)

where each brackets represents an element, the number of zeros in each element is x. Note the first pair

is xn.

4.5.5 Decoding List to Programs

Any x ∈ N can be decoded to a body:

1. If x = 0 then body is HALT.

2. Else let x = ⟪y, z⟫:

• If y = 2i is even then body is R+
i → Lz

• If y = 2i + 1 is odd, let z =< j, k > then body is R−
i → Lj , Lk

4.6 Gadgets

A gadget is a partial register machine graph(subprogram).

It operates on single input, and may output to multiple registers. It can use auxiliary scratch registers

for its internal use. It assumes scratch registers are initially set to 0 and must restore it to 0 after use.

8



4.6.1 Examples of Gadgets

(a) Zero R0 (b) Add R1 to R2

Figure 2: Examples of Gadgets

4.6.2 Usage of Gadgets

(a) Zero R0 (b) Add R1 to R2

Figure 4: Usages of Gadgets

4.7 Lists

Lists can be represented by recursively shifted numbers.

Given input values X = x, L = l and Z = 0, the push gadget pushes the value x into l. It returns X = 0,

L = ⟪x, l⟫ = 2x(2l + 1).

9



(a) Push X to L (b) Pop L to X

Figure 6: List Push and Pop

4.8 Universal Register Machine

5 Turing Machines

A Turing Machine has a tape and a head which can go left or right on the tape.

It is specified by M = (Q,Σ, s, δ) where

• Q —finite set of machine states.

• Σ —finite set of tape symbols, containing distinguished symbols, blank, ␣

• s ∈ Q —initial state

• δ ∈ (Q× Σ) → (Q× Σ× L,R)

5.1 Turing Machine Configurations

Turing Machine configuration is (q, w, u) consisting of:

• q ∈ Q —current state

• w ∈ Σ∗ —finite, possibly-empty string of tape symbols to the left of tape head

• u ∈ Σ∗ —finite, possibly-empty string of tape symbols to the right of tape head

An initial configuration is (s, ϵ, u) for initial state s and string of tape symbols u.

A configuration is in normal form if it has no computation step.

5.2 Turing Machine Computation

5.2.1 first and last

Define first and last as follows:

10



first(w) =

(a, v) if w = av

(␣, ϵ) if w = ϵ

Note that av means a followed by v instead of mathematical multiplication. The first function retrieves

the first symbol of a string, or ␣ if string is empty.

last(w) =

(a, v) if w = va

(␣, ϵ) if w = ϵ

last retrives the last symbol of a string, or ␣ if string is empty.

5.2.2 Turing Machine Computation

If δ(q, a) = (q′, a′, L), then the ‘head’ goes left, (q, w, u) → M(q′, w′, ba′u′).

If δ(q, a) = (q′, a′, R), then the ‘head’ goes right, (q, w, u) → M(q′, wa′, u).

6 Lambda Calculus

M ::= x V ariable (1)

| λx.M Abstraction (2)

| M1 M2 Application (3)

Contraction Consecutive abstractions can be contracted: λx.λy.λz. ≡ λxyz.

closed term A term is closed if there is no free variable.

6.1 Syntax

6.1.1 Free And Bound Variables

• FV (x) = x

• FV (λx.M) = FV (M)

x

• FV (M N) = FV (M) ∪ FV (N)

Examples:

• λx.x: x is bound

• λx.y: y is free

11



• λx.λy.λz.xy: x and y are bound

• FV ((λx.(λy.x y)y)(λz.z x)) = x, y

6.1.2 Association

Application is left-associate. Example:

((λx.xy)(λy.xy))(λxy.xyz)

6.1.3 Alpha Equivalence

λxy.x y=αλab.a b

M=αN iff one can be obtained by renaming variables.

6.1.4 Determining Alpha Equivalence

Strategy:

1. Check structure of terms

2. Check free variables match

3. Rename bound variables to check if they match

6.1.5 Substitution

M [N/x] means replace free variable x with N in M.

Substitution cannot either change a free variable into bound nor the reverse.

x[N/y] =

N x = y

x x 6= y


(λx.M)[N/y] =

 λx.M x = y

λz.M [z/x][N/y] x 6= y


(M1 M2)[N/y] = (M1[N/y])(M2[N/y])

where z is not used in N . i.e. z /∈ (FV (N)\x), z /∈ FV (M), z 6= y.

Examples:

• Replace variable: x[y/x] ≡ y

12



• No matching variable: z[y/x] ≡ z

• Replace variable in applications: (x y)(y z)[y/x] ≡ (y y)(y z)

• Replacing free variable without conflict: (λz.xz)[y/x] ≡ λz.yz

• Keep bounded variables bounded: (λx.xy)[y/x] ≡ λx.xy

• Keep free variables free: (λy.xy)[y/x] ≡ λz.yz

• Rename bounded x: (λx.xy)[x(λx.xy)/x] ≡ λz.z(x(λx.xy))

6.2 Semantics

Use β-Reduction to compute λ-Calculus.

Small-step rules:

(λx.M)N →β M [N/x]

M →β M ′

λx.M →β λx.M ′

M →β M ′

M N →β M ′ N

N →β N ′

M N →β M N ′

M=αM
′ M ′ →β N ′ N ′ →β N

M →β N

Note β-Reduction is not deterministic, for MN you can choose to reduce M first or N first.

The last rule ensures two equivalent expressions behave in the same way.

6.2.1 Multi-step β-reduction

Reflexivity, α-conversion M =α M ′

M →∗
β M ′

Transitivity
M →β M ′′ M ′′ →∗

β M ′

M →∗
β M ′

6.2.2 Confluence

Theorem Church-Rosser ∀M,M1,M2.M →∗
β M1 ∧M →∗

β M2 ⇒ ∃M ′.M1 →∗
β M ′ ∧M2 →∗

β M ′

Theorem Church-Rosser states if M reduces to M1 or M2, then M1 and M2 both reduces to a M ′.

13



6.2.3 β Normal Forms

λ-terms are in β-normal form if they contain no redexes(i.e. they cannot be reduced further).

Example: (λx.xx) is in normal form because it cannot be reduced.

Uniqueness of β-Normal Forms ∀M,N1, N2.M →∗
β N1 ∧M →∗

β N2 ∧

Uniqueness of β-Normal Forms states if M reduces to N1 or N2 which are in normal form, then N1 =α N2.

Not all λ-terms have a normal form. Like (λx.x x)(λx.x x) does not have one.

6.2.4 β Equivalent

Two α-terms are β-equivalent(=β) if they are =α if applied some β-reductions.

6.2.5 Innermost and Outermost Redexes

For E = (λx.M)N :

• Any redex that is in M or in N is inside the redex E.

• Any redex that is in M or in N is inside the redex E.

6.3 Reduction Strategies

Normal Order Reduces the leftmost outermost redex first. Always reduces a term to its normal form

if exists.

Not used by any programming languages.

Call By Name Reduces the leftmost outermost redex first. Does not reduce inside λ-abstractions. Not

always reduces a term to its normal form.

Examples: Haskell, R, Latex.

Call By Value Reduces the leftmost innermost redex first. Does not reduce inside λ-abstractions. Not

always reduces a term to its normal form.

Examples: C, OCaml

14



6.4 λ-Definable

A partial function f : Nn → N is λ-definable iff there exists a closed λ-term M with:

f(x1, . . . , xn) = y iff M x1 . . . xn =β y

and

f(x1, . . . , xn) ↑ iff M x1 . . . xn has no normal form

In short, M reduces to a value iff f computes to the value.

6.5 Church-Turing Thesis

The Church-Turing Thesis f is computable ↔ f is λ-definable ↔ f is register-machine-computable

↔ f is Turing-machine-computable

6.6 Encoding

6.6.1 Encoding Natural Numbers

Church numeral n ≜ λf.λx.f(. . . (f(x)) . . .)

A Church numeral n means “to do something n times”. Example:

• 0 ≜ λf.λx.x

• 1 ≜ λf.λx.f(x)

• 2 ≜ λf.λx.f(f(x))

15


	Operational Semantics of Expressions
	Big-step Semantics
	Example: definition of B-ADD
	Example: derivation tree

	Small-step Semantics
	Examples

	Many Steps of Evaluation
	Normal Form

	Operational Semantics of Commands
	States
	Semantics of The Example Language
	Expressions
	Assignments
	Sequential Composition
	Conditional
	While

	Properties of ->c
	Configurations
	Stuck Configurations


	Induction over derivations
	Example: Proving by induction

	Register Machines
	Configurations
	Computations
	Halting Computations

	Partial Functions
	Partial Function Notations
	Total Functions

	Computable functions
	Numerical Codings
	Numerical Codings of Pairs
	Numerical Coding of Programs
	Definition of Lists
	Numerical Coding of Lists
	Decoding List to Programs

	Gadgets
	Examples of Gadgets
	Usage of Gadgets

	Lists
	Universal Register Machine

	Turing Machines
	Turing Machine Configurations
	Turing Machine Computation
	!first! and !last!
	Turing Machine Computation


	Lambda Calculus
	Syntax
	Free And Bound Variables
	Association
	Alpha Equivalence
	Determining Alpha Equivalence
	Substitution

	Semantics
	Multi-step -reduction
	Confluence
	 Normal Forms
	 Equivalent
	Innermost and Outermost Redexes

	Reduction Strategies
	-Definable
	Church-Turing Thesis
	Encoding
	Encoding Natural Numbers
	Encoding Conditional
	Encoding Addition
	Encoding Pairs
	Encoding Recursion


	SKI Combinator Calculus

