
Chapter 1

Elementray Probability Theory

1.1 Sample Spaces and Events

1.1.1 Sample Spaces

We consider a randon experiment whose range of possible outcomes can be described by a set S called

the sample space.

Examples:

• Coin tossing. S = H,T .

• Die rolling. S = 1, 2, 3, 4, 5, 6.

• Throwing two coins. S = (H,H), (H,T ), (T,H), (T, T ).

1.1.2 Events

An event E is any subset of the sample space, E ⊆ S, a collection of some possible outcomes.

Examples:

• Coin tossing. E = H, E = T .

• Throwing two coins. E = different = (H,T ), (T,H).

The null event ∅ is an extreme possible event of S.

Sets that contain exactly one element are called singleton subsets. These events are called elementary

events of S.

The smallest events that can occur are the singleton subsets.
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Properties of Events

• The outcome of a random experiment is a single element s∗ ∈ S.

• For event E ⊆ S, the event is occurred iff s∗ ∈ E.

• s∗ /∈ E ↔ s∗ ∈ Ē.

Conclusively,

• The null event ∅ will not occur.

• The universal event S will always occur because all s∗ ∈ S.

1.1.3 Set Operations on Events

The event
∪
i

Ei will occur iff at least one of the events Ei occurs.

The event
∩
i

Ei will occur iff all the events Ei occurs.

Events are said to be mutually exclusive if ∀i, i.Ei ∩ Ej = ∅ (i.e. disjoint —at most one can occur).

1.2 Axioms of Probability

1.2.1 σ-Algebra of Events

A collection of sets, F , is a σ-algebra.

F must be:

• Nonempty, S ∈ F .

• closed under complements: E ∈ F ⇒ Ē ∈ F . closed under countable union: E1, E2, . . . ∈ F ⇒∪
i

Ei ∈ F .

Example: For S, an F can be F = S, ∅ because ∅ is the negation of S.

Probability Measures

A probability measure on the pair (S,F) is a mapping P : F → [0, 1] satisfying the axioms for all

subsets S which it is defined:

Axiom 1 ∀E ∈ F .0 ⇐ P (E) ⇐ 1

Axiom 2 P (S) = 1

Axiom 3 Countably addictive: For disjoint subsets E1, E2, . . . ∈ F ,

P

(∪
i

Ei

)
=
∑
i

P (Ei)
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Basic results:

• P (Ē) = 1− P (E)

• P (∅) = 0

• For any events E and F :

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F )

Propositions:

• If events E and F are independent, then Ē and F are also independent.

1.3 Interpretation of Probability

1.3.1 Classical Interpretation

If S is finite and the elementary events are considered equally likely, then for an event E ∈ S:

P (E) = |E|
|S|

Note that |E| means the cardinality of E, i.e. the time in which event E occurs.

1.3.2 Frequentist Interpretation

If one takes repeated observations in identical random situations, in which event E may or may not

occur, then the proportion of time in which E occurs tends to a limiting value —the probability of E.

1.4 Independent Events

Two events E and F are said to be independent iff P (E ∩ F ) = P (E)P (F ).

This also applies more generally to multiple events, intuitively. Formal definition on Lecture Video at

3:41.

1.4.1 Marginal Events

For the Coin and Die game, where we toss a coin and a die at the same time, consider each of the 12

possible combinations of head/tail and die values.

The probability table for this is:

https://imperial.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=8edd5574-56a6-42f9-89b0-af8600eaf981
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1 2 3 4 5 6

H 1
12

1
12

1
12

1
12

1
12

1
12

1
2

T 1
12

1
12

1
12

1
12

1
12

1
12

1
2

1
6

1
6

1
6

1
6

1
6

1
6

The sum of rows and columns, P (H), P (T ), P (1), P (2), . . ., P (6) are called marginal events.

Probabilities such as P (H, 1), or generally P (E ∩ F ), are called joint probability.

1.4.2 Dependent Events

A crooked die, namely a top, has the same faces on opposite sides, so it has only odd numbers.

If we change the game rule, in the way that we first flip the coin. If it comes up heads, then we roll the

normal die, otherwise roll the top.

The new probability table is:

1 2 3 4 5 6

H 1
12

1
12

1
12

1
12

1
12

1
12

1
2

T 1
6

0 1
6

0 1
6

0 1
2

1
4

1
12

1
4

1
12

1
4

1
12

Now the two experiments are called dependent, because the probabilities of the different outcomes of

the die change according to the outcome of the coin toss.

1.5 Conditional Probability

For E,F ∈ S, and P (F ) ̸= 0, the conditional probability of E occurring given that we know F has

occurred is defined as:

P (E|F ) = P (E ∩ F )

P (F )

If E and F are independent, then P (E|F ) = P (E).

Informally, conditioning can be thought of a shrinking of the sample space.

1.5.1 Conditional Independence

For events E1, E2 and F , the event pair E1 and E2 are conditionally independent iff:

P (E1 ∩ E2|F ) = P (E1|F )P (E2|F )
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1.5.2 Bayes Theorem

P (E|F ) = P (E)P (F |E)

P (F )

Informally, Bayes Theorem introduces a way to determine conditional events ‘reversely’ (with information

on E).

1.5.3 Partition Rule

Partition Rule (also known as the Law of Total Probability) states that:

P (E) =
∑
i

P (E|Fi)P (Fi) =
∑
i

P (E ∩ Fi)

Partition Rule indicates the probability of E can be ‘split’ into partitions of smaller events based on

some conditions.

Special Case

For any event S, E, Ē forms a partition of S, so by the Partition Rule,

P (E) = P (E ∩ F ) + P (E ∩ F̄ )

= P (E|F )P (F ) + P (E|F̄ )P (F̄ )



Chapter 2

Random Variables

2.1 Probability Spaces

A probability spaces (S,F , P ) that models random experiment by means of probability measure P (E)

defined on subsets E ⊆ S of the sample space S belonging to the sigma algebra F .

2.1.1 Random Variables

A random variable is a mapping from the sample space to R.

Discrete Random Variables Countable Random variables are called discrete.

Simple Random Variables Discrete Random Variables with a finite set of possible outcomes are called

simple.

Continuous Random Variables

Every s ∈ S has corresponding X(s). Multiple s can be mapped to the same random variable.

Informally, it defines how to ‘assign’ an event with a number, so we can use the number (the random

variable) to represent the event.

For example, we can map dice faces to variables X: X(“Dice Face is 1”) = 1, X(“Dice Face is 2”) = 2,

. . .. Then we have PX(1 ≤ X ≤ 2) = PX(“Dice Face is 1”, “Dice Face is 2”) = 2
6

= 1
3

2.1.2 Induced Probability

For each x ∈ R, let Sx ⊆ S, such that Sx = s ∈ S|X(s) ≤ x, then we write:

PX(X ≤ X) ≡ P (Sx)

PX is the induced probability on the random variable X in R.
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Informally, Induced Probability allows us to model any problem in an interval. For example, event

E = X ⇐ b can be written as E = F ∪G where F = (−∞, a) and G = (b].

Support

The image of S under X is called the support of X:

supp(X) ≡ X(S) = x ∈ R|∃s ∈ S.X(s) = x

So supp(X) contains all the possible outcomes for the random variable X. So PX(X ≤ x) is defined for

all x ∈ supp(X).

2.1.3 Example Random Variable Problem

For the game of tossing a fair coin, suppose we win 1 if we get heads, or we lose 1 otherwise. Then we

have:

X(T ) = −1

X(H) = 1

Sx =


∅ ifx < −1;

T if − 1 ≤ x < 1;

H,T if1 < x.

PX(X ≤ x) = P (Sx) =


P (∅) = 0 ifx < −1′

P (T ) = 1

2
if − 1 ≤ x < 1;

P (H,T ) = 1 if1 < x.

2.1.4 Cumulative Distribution Function

FX(x) = PX(X ≤ x)

Properties of CDF

Monotonicity ∀x1, x2 ∈ R.x1 < x2 ⇒ FX(x1) ≤ FX(x2)

FX(−∞) = 0, FX(∞) = 1

FX is right-continuous.

0 ≤ FX(x) ≤ 1.
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PX(a < X ≤ b) = FX(b)− FX(a) (2.1)

2.2 Discrete Random Variables

A random variable is discrete if it can take only a countable number of possible values:

X is discrete ⇐⇒ supp (X) is countable

Each sample space element s ∈ S is mapped by X to one of the values X = supp (X) = x1, x2, . . ..

The probability of a discrete random variable x1 can be written as:

PX(X = xi) = P (Ei) = FX(xi)− FX(xi−1)

2.2.1 CDF for Discrete Random Variables

CDF for Discrete Random Variables is a monotonic increasing step function which jumps at points in

X , continuous on the right.
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